AI應用的最後一哩路

數位時代 2018/09/14 16:01(338天前)

隨著Google旗下DeepMind所研發的人工智慧(AI)系統AlphaGo所帶起的一波人工智慧熱潮,台灣沒有錯過。科技部長陳良基將2017年訂為台灣的「人工智慧元年」,從建立「人工智慧高速運算服務」、在台大、清大、交大、成大設立「AI創新研究中心」、打造中科與南科的「智慧機器人自造者基地」,到AI計畫的最後一塊拼圖「半導體射月計畫」,都是希望強化台灣半導體產業於人工邊緣智慧(AI Edge Intelligence)的核心技術競爭力和在前瞻半導體製程與人工智慧晶片系統研發。



邊緣智慧,AI應用的最後一哩路

事實上,許多具有傳感器的裝置早就存在我們的生活裡,如攝影機、相機、喇叭與麥克風等也在過去10年左右,數位化連上網路。但連結網路攝影機與網路連接儲存裝置(NAS)所組成的數位監視系統相較於過去閉路式、類比訊號的監視裝置,除了儲存資料數位化之外,在本質上並沒有太大的不同,一樣需要人監看、回放,並判斷實際現場狀況。但當人工智慧應用普及,影像辨識、語音辨識轉成文字不再遙不可及,網路攝影機或現場麥克風所傳回的資料都可即時透過自動辨識,判斷畫面中的物體,加上蒐集人臉資訊及現場收音,AI都足以自動綜合解讀更多現場狀況,讓安防業者不再需要配置人力長時間全神貫注監看,僅須排除異常狀態。
數位監視系統配上人工智慧應用,彷彿在機器中加上了靈魂,如果可透過人工智慧學習不同辨識內容組合的場景意義,並對應相應的處理機制,就賦予數位監視系統協助安防控制,真正達成智慧化。
然而,要能夠讓攝影機進行影像辨識,除了可以將影像透過即時傳輸回主機上再進行計算判讀外,也可以想辦法透過攝影機上的處理器,直接計算進行辨識。前者需要占用大量網路傳輸資源,也有延遲時間的限制,但如果可以在攝影機裡加上適當設計、可節省電力的處理器與作業系統,直接現場計算辨識,不但可以省卻傳輸成本,也能減少辨識結果的延遲時間,加快即時反應。「邊緣智慧」就是指「在最終端裝置上的處理器與全套作業系統」,也可說是人工智慧落實到真實生活未來應用的最後一哩路。

FB留言

其它文章

降雨:

氣溫: